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a hundred or more dependent variables. With so many parameters to estimate, Bayesian prior
shrinkage is vital in achieving reasonable results. Computational concerns currently limit the range
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which overcome the computational hurdle and allow for Bayesian inference in large VARs with
a range of hierarchical shrinkage priors and with time-varying volatilities. We demonstrate the
computational feasibility and good forecast performance of our methods in an empirical application
involving a large quarterly US macroeconomic data set.

Keywords: Variational inference, Vector Autoregression, Stochastic Volatility, Hierarchical
Prior, Forecasting

JEL Classifications: C11, C32, C53

The Technical, Empirical and Data Appendices referenced in this paper are available at
https://sites.google.com/site/garykoop/.

*Email: dg171@leicester.ac.uk
�Email: gary.koop@strath.ac.uk
�Email: aubrey.poon@strath.ac.uk

1

mailto:dg171@leicester.ac.uk
mailto:gary.koop@strath.ac.uk
mailto:aubrey.poon@strath.ac.uk


1 Introduction

Recent years have seen the emergence of a literature involving large Bayesian VARs. The seminal

paper was Banbura, Giannone and Reichlin (2010). Subsequently large VARs have been used in many

empirical applications in macroeconomics and finance; see, among many others, Bloor and Matheson

(2010), Carriero, Kapetanios and Marcellino (2010), Carriero, Kapetanios and Marcellino (2012), Koop

(2013), Gefang (2014), Giannone, Lenza, Momferatou and Onorante (2014), Babura, Giannone and

Lenza (2015), Koop and Korobilis (2016, 2018a), Jarocinski and Mackowiak (2017), Carriero, Clark

and Marcellino (2016a,b,2018) and Chan (2018). The computational methods used in these papers fall

into two general categories: i) those which use Markov Chain Monte Carlo (MCMC) methods and ii)

those which avoid the use of MCMC methods by using natural conjugate priors (for which analytical

results are available).1 It is noteworthy that papers in category i) tend to use VARs which are much

smaller than papers in category ii). For instance, Banbura, Giannone and Reichlin (2010) use a natural

conjugate prior and work with 131 variables whereas Chan (2018) uses MCMC methods and works

with 20 variables. The reason for this is largely computational: MCMC methods are much slower than

analytical ones. In the large VAR literature there is a growing realization that it is computationally

difficult (if not impossible) to use MCMC methods with 100 or more variables especially in the context

of a recursive forecasting exercise where MCMC methods are used repeatedly on an expanding or rolling

window of data. Macroeconomic researchers currently wish to work with over 100 variables and it is

easy to imagine that, in the near future, they will want to work with many more.2

If MCMC methods cannot be used with large VARs, then there is a risk that the large Bayesian VAR

literature will not be able to expand to the increasingly large datasets that economists wish to work with.

This is because the natural conjugate approaches which provide analytical results have their limitations.

In particular, empirically-necessary extensions of the VAR such as adding stochastic volatility are not

possible with the natural conjugate prior. Nor is it possible, using the natural conjugate prior, to

accommodate the hierarchical priors which are increasingly used in the machine learning literature to

ensure parsimony, shrinkage and sparsity. The VAR literature has typically used MCMC methods to

handle such extensions (see, e.g., George, Sun and Ni, 2008, Koop, 2013, Korobilis, 2013 and Kastner

and Huber, 2017). In this paper we show how an alternative approach, Variational Bayes (VB), can be

1There are also a few papers which use approximate methods, such as the discount factor methods of Koop and
Korobilis (2013).

2In the US, the popular FRED data set, produced by the Federal Reserve Bank of St. Louis contains well over a
hundred monthly variables and well over two hundred quarterly variables.
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used for Bayesian inference in cases where MCMC methods are computationally-infeasible. VB methods

will be discussed in the next section, but their key properties are that they provide an approximation

to the Bayesian posterior and predictive distributions in the VAR and are computationally much faster

than MCMC methods. They can be used in Bayesian VAR forecasting exercises involving huge VARs.

In this paper, we develop VB methods for a range of hierarchical shrinkage priors that are popular in

the machine learning literature and have been used in regression or with small or medium sized VARs.

These include the horseshoe, priors which fall in the Least absolute shrinkage and selection operator

(Lasso) class, the stochastic search variable selection (SSVS) prior and adaptive shrinkage Jeffreys’ and

t-prior. Our methods allow for automatic shrinkage on the VAR error covariances as well as the VAR

coefficients themselves. We also develop VB methods which can be used to add stochastic volatility to

any of the VARs with hierarchical shrinkage.

In an empirical exercise involving a large data set of quarterly US macroeconomic variables we show

that VB methods are highly accurate and forecast well. In particular, we demonstrate the accuracy of

VB methods using a data set of 10 variables. We show that, for some of the shrinkage priors, MCMC

methods and VB methods produce results that are virtually identical and are very close to one another

with other priors. We demonstrate the forecasting performance of VB methods using a large data set

of 100 variables. In this dimension, MCMC methods are not feasible, but we show good forecasting

performance can be obtained using VB methods.

2 Variational Bayesian Inference

VB methods have been growing in popularity as a practical way of doing Bayesian inference in models

for which MCMC would be too computationally demanding. The basic theory justifying VB is provided

in many papers including Blei, Kucukelbir and McAuliffe (2017) and Ormerod and Wand (2010). Here

we explain the necessary ingredients to use VB methods in practice in a general context where p (θ|y) is

the posterior of interest involving data y and parameters θ. VB methods approximate this posterior with

another simpler density q (θ) that is as close as possible to it in a Kullback-Leibler sense. Minimizing

KL can be shown to be equivalent to maximizing the Evidence Lower Bound (ELBO):

ELBO = E (log p (θ, y))− E (log q (θ)) . (1)
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Thus, VB involves optimizing a function (the ELBO) which is typically much faster than doing MCMC.3

VB requires the choice of an approximating density, q (θ), and the derivation of the ELBO for

that function. Computation is particularly easy if the former is taken from the so-called mean field

variational family:

q (θ) =

M∏
m=1

qm (θm) , (2)

where θm for m = 1, ..,M are the blocks of parameters which make up θ.

If we assume the prior for the blocks of parameters are independent, then the ELBO can be written

as:

ELBO = E (log p (y|θ)) +

M∑
m=1

E (log p (θm))−
M∑
m=1

E (log qm (θm)) . (3)

Note that the −E(log qm(θm)) terms are the entropies of each approximating density and, thus, working

with densities with known entropies is convenient when doing VB inference.

Within this family, it can be proved (see, for instance, Section 2.2 of Ormerod and Wand, 2010) that

the optimal choice for qm (θm) involves the full conditional posterior densities used in a Gibbs sampler

and is given by:

qm (θm) = exp [E (log p (θm|y, θ−m))] , (4)

where θ−m denotes all parameters except for those in θm and the expectation is taken over q (θ−m).

Thus, VB is particularly easy for any model which admits Gibbs sampling. The full conditional

posteriors used in Gibbs sampling appear in (4) and, thus, in the ELBO in (3). The ELBO also

involves the likelihood and prior and is easiest to evaluate if each approximating density has a known

entropy. The expectations in (4) and (3) are calculated using optimization (not posterior simulation)

in a similar fashion to the expectations maximization (EM) algorithm of Dempster, Laird and Rubin

(1977).

3In some cases, the ELBO can be difficult to calculate. In such cases, a convergence criteria based on the parameters
themselves is valid. That is, iterating until the estimated parameters of the approximating densities stop changing can
be done. We have found this strategy to also work well with the models used in this paper.
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3 Variational Bayes Methods for VARs Using Conventional

Priors

There are many priors which have been used with VARs in the past which involve subjectively-elicited

prior hyperparameters. See, for instance, Dieppe, Legrand and van Roye (2016) which is a popular

Bayesian VAR software package that contains a range of popular priors including the Minnesota prior,

the natural conjugate prior and the independent Normal-Wishart prior. We are not directly interested in

any of these priors. For the Minnesota and natural conjugate priors, analytical posterior and predictive

results are available. Hence, MCMC methods are not required and they can be used with large VARs.

However, these priors have restrictive properties and cannot easily be extended (e.g. to allow for

stochastic volatility) without resort to MCMC methods. With the independent Normal-Wishart prior

MCMC methods are required. But VB methods for this prior have been developed in Hajargasht and

Wozniak (2018). All of these are conventional, subjectively-elicited, non-hierarchical priors. In this

paper, our interest lies in hierarchical priors which allow for automatic shrinkage in large VARs. All of

these will be hierarchical extensions of a conventional prior. Hence, we begin with a conventional VAR

prior in this section. For reasons outlined below, we do not work with the independent Normal-Wishart

prior, but something closely related to it.

Throughout this paper, we work with the following VAR (or extensions of it):

A0yt = b0 + B1yt−1 + . . .+ Bpyt−p + εt, εt ∼ N(0,Σ), (5)

for t = 1, . . . , T where yt is an n × 1 vector of endogenous variables, b0 is a n × 1 vector of intercept

terms, Bi is the n× n matrix of lag i VAR coefficients, Σ = diag(σ2
1 , . . . , σ

2
n) and A0 is an n× n lower

triangular matrix with ones on the diagonal.

We can rewrite (5) as

yt = Xtβ + Wta + εt, (6)

where Xt = In ⊗ [1,y
′

t−1, . . . ,y
′

t−p] is an n ×K matrix, β = vec([b0,B1, . . . ,Bp]
′
) is K × 1 vector of

coefficients, a consists of the free elements of A0 stacked by rows with Wt being the n × m matrix

containing the appropriate contemporaneous elements of yt. Equation (6) can be written in terms of n
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independent equations, with the ith equation being:

yi,t = zi,tθi + εi,t, εi,t ∼ N(0, σ2
i ). (7)

where zi,t is a row vector with ki elements and θi is a vector containing the elements of β and a pertaining

to the ith equation. Below we also use notation where Zi = (zi,1, . . . , zi,T )′, yi = (yi,1, . . . , yi,1)′ and

εi = (εi,1, . . . , εi,1)′.

There are two advantages of writing the VAR in this form. The first advantage is computational.

This specification allows for equation-by-equation estimation of the VAR. This breaks the task of

working with the huge K dimensional vector of VAR coefficients into that of working with n smaller

ki dimensional sets of regression coefficients. As documented in, e.g., Carriero, Clark and Marcellino

(2016a), working directly with the posterior covariance matrix for all the VAR coefficients jointly involves

O(n6) manipulations whereas equation-by-equation estimation reduces this to O(n4). For large values

of n the computational benefits of this are huge. Secondly, the elements of A0 relate to the error

covariances of the reduced form VAR (i.e. the latter covariance can be written as (A−1
0 )Σ(A−1

0 )′).

When n is large, the number of error covariances can be large and it can be desirable to shrink many

of them to zero. Using the specification in (7) means that this shrinkage can easily be done using the

same prior as is used on the VAR coefficients.

The prior we use for the parameters in the ith equation is:4

θi ∼ N(0,Vi), (8)

σ−2
i ∼ G(ν, s), (9)

where G denotes the Gamma distribution. We call this the Normal independent prior.

Textbook derivations for the Normal linear regression model with independent Normal-Gamma prior

(e.g. chapter 3 of Koop, 2003) can be used to derive the full conditional posteriors. You, Ormerod and

Muller (2014) derive the VB approximating densities using these full conditional posteriors and (4).

For equation i, these are

4We adopt a notational convention where prior hyperparameters selected by the researcher are denoted using lower
bars. We do not adopt this convention for Vi since, in the next section, we will use a hierarchical structure which means
it will depend on other parameters. Our notation also assumes that most prior hyperparameters are chosen to be the
same in every equation. This can be trivially relaxed by adding i subscripts to the prior hyperparameters.
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q(θi) ∼ N(θ̄i, V̄i), (10)

q(σ−2
i ) ∼ G(ν +

T

2
, s̄i), (11)

where

V̄i = [(
ν + T

2

s̄i
)Z
′

iZi + V−1
i )]−1, (12)

θ̄i = (
ν + T

2

s̄i
)V̄iZ

′

iyi, (13)

s̄i = s+
1

2

∥∥yi − Ziθ̄i
∥∥2

+
1

2
tr(Z

′

iZiV̄i). (14)

Note that the VB approximating densities depend on three arguments: θ̄i, V̄i and s̄i. These are

optimized in an iterative process.5 Beginning with an intialization of any two of these, the algorithm

iterates using the preceding formulae. After each iteration, ELBOi is calculated. Iteration continues

until the increase in ELBOi between the jth and (j − 1)th iteration is less than some convergence

criterion. The formula for ELBOi is given in the Technical Appendix. This algorithm is done

independently for each of the i = 1, .., n equations, which means it can be parallelized to increase

computational efficiency.

4 Variational Bayes Methods for the VAR with Hierarchical

Shrinkage Priors

We have emphasized the fact that, with large VARs, over-parameterization concerns can be serious and,

thus, Bayesian prior shrinkage is desirable. In this section, we develop VB methods for a range of priors

which do this shrinkage in an automatic fashion. These priors are all hierarchical and have been used

in the machine learning literature. These all are hierarchical extensions of the VAR and prior of the

5Throughout this paper, we adopt a notational convention where upper bars denote quantities which are optimized in
a VB algorithm.
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preceding section. That is, whereas the prior of the preceding section depended on hyperparameters

chosen by the researcher, in this section we will work with priors that involve a hierarchical structure

and require less input from the researcher. But, conditional on a particular hierarchy, all the theoretical

results derived above still hold and we will draw upon them in this section.

4.1 Adaptive shrinkage t-prior

The adaptive shrinkage t-prior, as used in, e.g., Korobilis (2013) adopts the same prior at the first level

of the hierarchy as the conventional prior of Section 3. However, the prior covariance matrix for the

coefficients in equation i becomes:

Vi = diag(τi,1, . . . , τi,ki). (15)

The degree of shrinkage is controlled by τi = (τi,1, . . . , τi,ki)
′ which are treated as unknown parameters.

The prior for each of these is

τ−1
i,j ∼ G(a0, b0), for j = 1, . . . , ki. (16)

The VB approximating densities, q(θi) and q(σ2
i ) are the same as (10) and (11) since their conditional

posteriors (now additionally conditional on τi) are the same as in the preceding section. Hence, we only

need to derive q(τ−1
i ). Given the form of the conditional posterior for τi,j given in Korobilis (2013), we

can derive:

q(τ−1
i,j ) ∼ G(a0 +

1

2
,
θ̄2
i,j + V̄jj

i

2
+ b0), (17)

where V̄jj
i is the (j, j)th element of V̄i, Thus, the new term that VB updates is

τ−1
i,j =

a0 + 1
2

θ̄2
i,j+V̄jj

i

2 + b0

. (18)

As before, VB iterates over θ̄i, V̄i and s̄i, but now we additionally have to iterate over τ−1
i,j . The ELBO

used to assess convergence is given in the Technical Appendix.

We also use the adaptive shrinkage Jeffreys’ prior (see Korobilis, 2013) which takes the form

τi,j ∼ 1
τi,j

, for j = 1, . . . τi,ki . (19)
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This can be viewed as a special case of the adaptive shrinkage t-prior with a0 = b0 = 0.

4.2 The Adaptive Lasso

The adaptive Lasso maintains the prior covariance matrix given in (15), but allows for a different

treatment of the prior shrinkage parameters, τi. In particular, it assumes:

τi,j ∼ Exp(λi,j

2 ), for j = 1, . . . , ki (20)

with

λi,j ∼ G(a0, b0). (21)

With this hierarchical shrinkage prior, the optimal VB approximating densities for q(θi) and q(σ−2
i )

are the same as in Section 3, but we now add approximating densities for τi and λi where λi =

(λi,1, . . . , λi,ki)
′. These are

q(τ−1
i,j ) ∼ iG(

√
λ̄i,j

θ̄2
i,j + V̄jj

i

, λ̄i,j), (22)

where iG denotes the inverse Gaussian distribution and

q(λi,j) ∼ G(a0 + 1, 0.5τ̄i,j + b0). (23)

These involve the following terms to be iterated in the VB algorithm:

τ−1
i,j =

√
λ̄i,j

θ̄2
i,j + V̄jj

i

, (24)

λ̄i,j =
a0 + 1

0.5τ̄i,j + b0
, (25)

and τ̄i,j denotes 1

τ−1
i,j

.

The evidence lower bound is given in the Technical Appendix. In our empirical section, we also

use the Bayesian Lasso of Park and Casella (2008). This is the same as the adaptive Lasso but sets

λi,j = λi, so that we now have a global shrinkage parameter which is the same for all coefficients in

equation i.

9



4.3 Horseshoe prior

Another popular hierarchical shrinkage prior is the horseshoe prior of Carvalho, Polson and Scott (2010).

It has attractive theoretical properties, including an ability to adapt to different patterns of sparsity

and has been found to be quite robust. To the equation-by-equation VAR set up involving (7), (8) and

(9), the horseshoe prior adds the assumptions that:

Vi = diag(λi,1τi, . . . , λi,kiτi), (26)

where the priors for the new parameters are

λ−1
i,j |νi,j ∼ G(

1

2
,

1

νi,j
), (27)

τ−1
i |ξi ∼ G(

1

2
,

1

ξi
), (28)

ν−1
i,1 , . . . , ν

−1
i,ki

, ξ−1
i ∼ G(

1

2
, 1) (29)

and i indexes equations and j indexes coefficients.

The optimal q(θi) and q(σ−2
i ) are the same as in preceding sub-sections. The conditional posteriors

for the remaining parameters using the horseshoe prior can be found in Makalic and Schmidt (2015).

These can be used to derive:

q(λ−1
i,j ) ∼ G(1, ν−1

i,j +
θ̄2
i,j + V̄jj

i

2
τ−1
i ), (30)

q(τ−1
i ) ∼ G(

ki + 1

2
, ξ−1
i +

1

2
λ−1
i,j

ki∑
j=1

(θ̄2
i,j + V̄jj

i )), (31)

q(ν−1
i,j ) ∼ G(1, 1 + λ−1

i,j ) (32)

and

q(ξ−1
i ) ∼ G(1, 1 + τ−1

i ). (33)
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The terms which are updated in the VB iterations are (13), (14),

λ−1
i,j =

1

ν−1
i,j + τ−1

i

θ̄2
i,j+V̄jj

i

2

, (34)

τ−1
i =

ki + 1

2ξ−1
i + [λ−1

i,j

∑ki
j=1(θ̄2

i,j + V̄jj
i )]

, (35)

ν−1
i,j = 1/(1 + λ−1

i,j ), (36)

ξ−1
i = 1/(1 + τ−1

i ). (37)

These values can be plugged into the formula for Vi and used to update V̄i. The formula for the

evidence lower bound used to assess convergence is given in the Technical Appendix.

4.4 SSVS

George, Sun and Ni (2008) develop MCMC methods for the VAR with the SSVS prior. The SSVS prior

assumes that Vi = diag(vi,1, . . . , vi,ki) and

vi,j =


κi,j,0

κi,j,1

if γi,j = 0

if γi,j = 1

(38)

where κi,j,0 is chosen to be large and κi,j,1 to be small. In words, if γi,j = 1 then a prior which strongly

shrinks the jth coefficient in the ith equation towards zero is used. The prior for γi = (γi,1, . . . , γi,ki)

follows a Bernoulli distribution

P (γi,j = 1) = πi,j , (39)

with

P (γi,j = 0) = 1− πi,j . (40)

The VB approximating densities for θi and σ2
i are the same as in the preceding section. The

remaining approximating densities can be derived based on posterior conditionals given in George, Sun
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and Ni (2008). The approximating density for γi is

q(γi) ∝ Bernoulli(π̄i,j)

where

π̄i,j =

1
κi,j,1

exp(− θ̄
2
i,j+Vjj

i

2κ2
i,j,1

)πi,j

1
κi,j,1

exp(− θ̄
2
i,j+Vjj

i

2κ2
i,j,1

)πi,j + 1
κi,j,0

exp(− θ̄
2
i,j+Vjj

i

2κ2
i,j,0

)(1− πi,j)
. (41)

Finally, we have

Vi = diag(v̄i,1, . . . , v̄i,ki).

where

v̄i,j = π̄i,jκi,j,1 + (1− π̄i,j,j)κi,j,0. (42)

The evidence lower bound for the VAR with SSVS prior is given in the Technical Appendix.

4.5 Adding Stochastic Volatility to the VAR

Many papers, using many different macroeconomic data sets, have found stochastic volatility to be an

important feature and that failing to take it into account can lead to poor forecasting performance (see,

e.g., Clark, 2011). Thus, it is important to develop methods for adding stochastic volatility to the VAR

using any of the priors in the preceding sub-sections. In this sub-section, we do so with an approximate

VB method.

We assume the model is the same as in any of the preceding sub-sections, except that the error

variance in equation i is now exp(hi,t) where

hi,t = hi,t−1 + ζi,t, ζi,t ∼ N(0, σ2
hi

), (43)

σ−2
hi
∼ G(a1, b1). (44)

hi,0 ∼ N(0, V i,h), (45)

where the initial conditions hi,0 are treated as parameters to be estimated. Chan and Eisenstat (2018)
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and Chan and Hsiao (2014) provide the conditional posteriors for this model. We will not reproduce

them here but note that these papers use MCMC methods involving Kim, Shephard and Chib (1998)’s

auxiliary mixture sampler. The latter involves transforming the dependent variable in equation i as

y∗i,t = log(yi,t − zi,tθi)
2 and approximating the error in the transformed equation by a mixture of seven

normal distributions. This is a highly accurate approximation but the resulting MCMC algorithm is

computationally slow. Accordingly, similar to Koop and Korobilis (2018b), we approximate this error

by a single normal distribution. This allows for simple VB estimation of the volatilities involving

only the normal distribution and, as demonstrated in Appendix B.2 of Koop and Korobilis (2018b),

the approximation is a good one, except in the tails of the distribution. In this paper, instead of

using the normal approximation of Koop and Korobilis (2018b), we use an alternative approximation

taken from Chan and Eisenstat (2018) which we have found to work better and which should further

improve the accuracy of the approximation. In macroeconomic applications such as ours, such an

approximation should suffice and is definitely preferable to other simple estimators that have been used

in this literature (e.g. the exponential weighted moving average). The VB estimator of stochastic

volatility models of Tran, Nott and Kohn (2016) would be more accurate than our approach, but also

much more computationally demanding and, thus, not feasible in our large VAR context.

The optimal VB approximating density for θi is given in (10) if we replace the homoskedastic error

covariance matrix by the time-varying one.

The new approximating densities that arise when we add stochastic volatility are:

q(hi) ∼ N(h̄i, V̄hi
), (46)

q(hi,0) ∼ N(h̄i,0, V̄hi,0
), (47)

and

q(σ−2
hi

) ∼ G(a1 +
T

2
, s̄hi

). (48)

The arguments in these densities involve the errors êi = (yi − ziθ̄i) and use notation where

si =
s̄hi

a1 + T
2

(49)
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and

H =



1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1
. . . 0

...
. . .

. . . 0

0 · · · 0 −1 1


. (50)

The VB algorithm, as it relates to stochastic volatility for the ith equation then proceeds through the

following steps:

1. Set h̄0,i =
(V −1

i,h+1/si)
−1

h̄i,1
si

.

2. Input êi and h̄0,i into the M-Step of Algorithm 4 of Chan and Eisenstat (2018) which will produce

updates for h̄i and V̄hi .

3. Using the updated h̄i and V̄hi
, compute s̄hi

= b1 + 1
2 [(Hh̄i−α)′(Hh̄i−α) + tr(HV̄hi

H′)] where

α = (h̄i,0, 0, . . . , 0)′.

4. Compute the ELBO given in the Technical Appendix.

5. Repeat steps 1-4, until the change in the ELBO is very small.

A word is in order about our VB approximating density, q(hi). The approximating density for all

the model parameters falls in the mean field variational family, and thus our VB algorithm is a valid

one. The fact that we are using a normal approximation for q(hi) means, however, we are not working

with the optimal VB density. Nevertheless, as we demonstrate below, the approximation is a good

one. The M-step of Algorithm 4 of Chan and Eisenstat (2018) is a generic algorithm for obtaining the

posterior mode of the volatilities in a stochastic volatility process (we use this posterior mode as h̄i).

It is an optimization algorithm. Details are provided in Appendix B.2 of Chan and Eisenstat (2018)

but key points worth noting are that it involves two Hessian terms which are available in closed form

and these terms can be used to obtain V̄hi . The optimization is done using the the Newton-Raphson

method. In practice, we find that using this algorithm, which involves finding the mode of q(hi), to

work quickly and efficiently. In earlier versions of this paper, we used a different mean-based algorithm

and occasionally found it to run into singularity problems, particularly in very high dimensional models.

These problems do not occur with the present algorithm.
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4.6 Choice of Prior Hyperparameters

With the exception of the horseshoe prior and Jeffreys’ prior, our priors involve hyperparameters which

must be selected. The Technical Appendix provides the values we use for these. Here we describe

the general issues which infuse our choices. In extensive experimentation, we have found it is not

acceptable to simply use the same choices for all VAR dimensions. This is unsurprising. Each equation

in the VAR has np + 1 right-hand side variables most of which are probably unimportant. As VAR

dimension increases the number of right-hand side increases and the need for a prior which induces

sparsity increases. Our prior hyperparameter choices reflect this. We have found that working with

relatively non-informative priors is fine if n = 10 or even 20, but not with n = 100. Accordingly, for the

t-prior, both variants of the Lasso and the SSVS prior, our prior hyperparameters depend on n and p

and induce a higher degree of shrinkage in larger models.

For the non-informative Jeffreys’ prior, adding increasing shrinkage as n increases is not possible.

As we shall see in our forecasting exercise, Jeffreys’ prior performs poorly. This inadequate shrinkage

suggests that it is unsuitable for use in very large models. The horseshoe prior, too, involves no

hyperparameters. We have found that it, too, forecasts poorly in very high dimensional models. We

have found the reason for this to be that the prior for τ−1
i given in (28) allocates too much prior

probability to non-sparse regions of the parameter space. However, we have found that simply fixing τi

to a value which implies tighter shrinkage as VAR dimension increases work much better. The results

in the empirical section of this paper reflect such an approach and, for the large VAR with n = 100, set

τ̄i =
1

K +m
, (51)

where K is the number of VAR coefficients and m is the number of elements in a. Adopting the same

strategy for Jeffreys’ prior also improves forecast performance and, thus, in our empirical section we do

so.

5 Empirical Work

In this section, we present evidence on the performance of VB methods with various hierarchical priors

using quarterly US data from 1959Q4 through 2018Q1 taken from the Federal Reserve Bank of St.

Louis’ FRED-QD data set. All variables are transformed to stationarity following recommendations in
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the FRED-QD data base. All variables are standardized to have mean zero and standard deviation one.

We present results from VARs of various dimensions. Our small/medium/large data sets contains

n = 10/20/100 variables. The list of variables in each data set is given in the Data Appendix. The

main justification for use of VB methods is that their computational burden is potentially much less

than MCMC methods. This motivates our choice of VAR dimensions. With our small and medium

data sets, MCMC computation is not that onerous and we can do extensive comparisons between VB

and MCMC methods. With the large data set, a huge computation burden results when using MCMC

methods and, hence, we largely focus on VB methods with this data set.

In this empirical exercise we aim to answer several questions. Two of these relate to computation

time: 1) How much faster are VB methods than MCMC methods? and 2) How scaleable are VB

methods? These are addressed in the following sub-section. The subsequent sub-section addresses

the question: How accurate are VB methods? It does so by comparing VB (which is an approximate

method) to MCMC (which, if a sufficient number of replications is taken, can be expected to be highly

accurate) results. The final sub-section is a recursive forecasting exercise which addresses the question:

How good are VB methods combined with hierarchical priors at macroeconomic forecasting? This sub-

section offers a detailed comparison of forecast performance for the various priors and VAR dimensions.

The results in this paper use p = 1 lag with results for longer lag lengths being put in the Empirical

Appendix. In the forecasting exercise, different lag length choices tend to lead to very similar forecast

performance but p = 1 tends to forecast slightly better than longer lag lengths.

5.1 Computation Time

Table 1 presents computation time in seconds to estimate a model using a standard desktop with an

Intel Core i7-7700 @ 3.6GHz processor and 16 GB of RAM. For MCMC methods we take 22, 000 draws

and discard an initial 2, 000 burn-in draws. These values lead to convergence as assessed by standard

MCMC diagnostics. For VB methods, we judge convergence to have occurred when the change in the

ELBO is less than 10−4.
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Table 1: Computation time (in seconds)
10 variables 20 variables 100 variables

Homoskedastic
Model MCMC VB MCMC VB MCMC VB

Normal Independent 19.6 0.3 53.8 0.3 1383.4 3.0
Horseshoe 49.0 1.0 103.6 1.7 1719.6 15.4

Lasso 260.0 0.8 455.2 1.3 2821.0 14.9
Adaptive Lasso 279.4 0.7 158.8 2.4 2783.8 4.0

t-priors 28.6 0.3 73.4 0.4 1510.6 3.0
SSVS 39.4 0.5 103.4 0.6 2343.0 2.0

Jeffreys’ 39.8 0.5 113.0 0.9 1764.2 38.6
Heteroskedastic

Normal Independent 131.4 4.6 315.0 15.2 3383.8 65.6
Horseshoe 159.6 13.6 346.6 19.4 3873.6 86.5

Lasso 358.0 7.1 682.6 23.2 4808.2 120.2
Adaptive Lasso 366.6 7.9 681.8 13.8 4316.8 89.4

t-priors 157.8 6.8 323.8 17.6 3470.2 85.6
SSVS 143.2 3.1 352.2 6.0 4360.8 48.4

Jeffreys’ 145.0 6.7 333.4 12.2 3758.2 71.9

Note first that MCMC methods are very slow with the large data set. Even when using our

equation-by-equation methods which, as noted by Carriero, Clark and Marcellino (2016), greatly speed

up computation, to estimate a single model takes roughly an hour for any of the priors considered in this

paper when stochastic volatility is added. Clearly, running an extensive recursive forecasting exercise

by repeatedly re-running the MCMC algorithm on an expanding window of data would lead to a huge

computational burden. In contrast VB methods are much faster with the time for estimating a single

model being a minute or two for the various priors with the large data set.

VB methods are also found to be scaleable in the sense that the computational time is increasing

roughly at a linear rate with n (e.g. computation times for the 100 variable models are roughly 10

times as big as those for 10 variable models). In contrast, MCMC methods are less scaleable with the

computational burden increasing at a greater than linear rate. In this paper, we are working with a

maximum of n = 100. With this value, MCMC methods are just feasible. But for larger values of n

(e.g. n = 200 or more) that researchers are interested in working with, our results suggest VB methods

are practical whereas MCMC methods are not.

The computation times for both VB and MCMC are similar across hierarchical priors. The VAR

without a hiearchical prior will tend to have faster computation since it has fewer parameters to estimate.

But the addition of any of our hierchical priors does not lead to large increases in the computational
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burden. Similarly, the inclusion of stochastic volatility will inevitably slow down computation. But this

slowdown is relatively small for both VB and MCMC indicating our approximate method for including

stochastic volatility is computationally fast.

5.2 The Accuracy of VB

The accuracy of VB estimation can be investigated by comparing VB results to MCMC results. We

have done extensive comparisons and found VB to be highly accurate. For the sake of brevity we do

not report a full set of results for our many different priors, VAR dimensions and parameters. Instead,

for n = 10 we present Tables 2, 3 and 4 which summarize our findings. In particular, they produce

summary statistics across all VAR coefficients or across all error covariance terms (i.e. the vector of

parameters we call a) of the absolute value of the difference between the MCMC and VB posterior

means. For the homoskedastic version of each model we also present findings for the error variances. In

the Empirical Appendix, figures are presented which plot VB and MCMC estimates (posterior means)

for each individual VAR coefficient. It can be seen that they tend to be virtually the same.

Tables 2, 3 and 4 show VB results to be very accurate. The median of our divergence measure is

very small for every prior. With one exception, it is never greater than 0.02. The one exception is for

Jeffreys’ prior, but even here the median absolute divergence between VB and MCMC is small. For

most of the priors, the maximum divergence is also very small. Again, the main exception is Jeffreys’

prior which has a small number of coefficients where the divergence is larger. Overall, we find VB to

be highly accurate.

The Empirical Appendix contains graphs which plot posterior means of impulse responses and

(where relevant) stochastic volatilities for VB and MCMC approaches. These, too, in most cases are

virtually identical and in the few cases where the two lines do not lie on top of one another tend to be

quite similar. We highlight the fact that in the stochastic volatility figures, the MCMC estimates are

based on a mixture of 7 Normal distributions whereas, as outlined in Section 4.5, the VB estimates use

only one Normal distribution. Thus, our findings suggest that the approximation error inherent in the

use of VB and that inherent in the use of one Normal distribution are both small.
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Table 2: Absolute Value of Deviations between MCMC and VB - VAR coefficients
Homoskedastic Heteroskedastic

Model Median 10th Percentile 90th Percentile Max Median 10th Percentile 90th Percentile Max

Normal Independent 0.00 0.00 0.00 0.01 0.01 0.00 0.03 0.23

Horseshoe 0.00 0.00 0.03 0.17 0.01 0.00 0.04 0.45

Lasso 0.01 0.00 0.03 0.22 0.01 0.00 0.03 0.14

Adaptive Lasso 0.00 0.00 0.01 0.06 0.01 0.00 0.03 0.34

t-priors 0.00 0.00 0.00 0.02 0.01 0.00 0.03 0.24

SSVS 0.00 0.00 0.04 0.70 0.01 0.00 0.05 0.68

Jeffreys’ 0.00 0.00 0.13 0.72 0.04 0.00 0.15 1.08

Table 3: Absolute Value of Deviations between MCMC and VB - Covariance terms
Homoskedastic Heteroskedastic

Model Median 10th Percentile 90th Percentile Max Median 10th Percentile 90th Percentile Max

Normal Independent 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.13

Horseshoe 0.01 0.00 0.03 0.06 0.01 0.00 0.05 0.09

Lasso 0.01 0.00 0.04 0.08 0.02 0.00 0.04 0.09

Adaptive Lasso 0.00 0.00 0.01 0.01 0.01 0.00 0.04 0.12

t-priors 0.00 0.00 0.00 0.00 0.01 0.00 0.04 0.05

SSVS 0.00 0.00 0.04 0.10 0.01 0.00 0.05 0.12

Jeffreys’ 0.02 0.00 0.14 0.20 0.03 0.01 0.18 0.32

Table 4: Absolute Value of Deviations between MCMC and VB - Error Variances
Homoskedastic Heteroskedastic

Model Median 10th Percentile 90th Percentile Max Median 10th Percentile 90th Percentile Max

Normal Independent 0.00 0.00 0.00 0.00 - - - -

Horseshoe 0.02 0.00 0.03 0.03 - - - -

Lasso 0.00 0.00 0.00 0.00 - - - -

Adaptive Lasso 0.00 0.00 0.01 0.01 - - - -

t-priors 0.00 0.00 0.00 0.00 - - - -

SSVS 0.00 0.00 0.00 0.02 - - - -

Jeffreys’ 0.06 0.01 0.14 0.16 - - - -

5.3 Forecasting Comparison

In this sub-section, we carry out a forecasting exercise using our small, medium and large data sets. We

forecast three variables: GDP growth, inflation (based on the PCE price index) and the unemployment

rate for forecast horizons h = 1 and 4. The forecast evaluation period begins in 1990Q1. We remind the

reader that, with this many variables, MCMC methods are not feasible and, hence, all results are based

on VB methods. We use Mean Squared Forecast Errors (MSFEs) and log scores (i.e. averages of the log

predictive densities) to evaluate forecast performance. We also present results for an AR(1) benchmark
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and carry out the sign test of equal predictive accuracy of Diebold and Mariano (1995) against this

benchmark. In the tables, ***, ** and * denote rejection of the null hypothesis of equal predictive

accuracy of a model and the benchmark at the 1%, 5% and 10% level of significance, respectively.

Tables 5, 6 and 7 present results for GDP growth, inflation and the unemployment rate, respectively.

The most important point about these tables is that we were able to produce them. That is, the use

of VB methods means that it is computationally feasible to carry out a large VAR forecasting exercise

using models with hierarchical shrinkage priors and stochastic volatility.

In general, we find VAR methods with hierarchical priors to forecast very well for GDP growth and

the unemployment rate for both h = 1 and h = 4. Forecasts from the various hierarchical priors and

VAR dimensions almost always beat the AR(1) benchmark, usually by a large, statistically significant,

amount. For inflation, which is often modelled using very parsimonious models, our results are less

strong. However, if log-scores are used as the forecasting metric, then inflation forecasting results from

the ten variable models with stochastic volatility are very good. This indicates the importance of the

inclusion of stochastic volatility to get the correct modelling of the dispersion of the predictive density.

A comparison of results across the different hierarchical priors indicates that most of the different

approaches are leading to quite similar forecast performance. So we cannot provide a recommendation

of one prior which is particularly well suited for working with large VARs. However, there are two

priors which are inferior to the rest. These are Jeffreys’ prior and the Lasso prior. For each of these

there are a few cases where they forecast poorly, particularly in the n = 100 model. For instance, for

Jeffreys’ prior, forecasts of unemployment using the n = 100 are very poor. This prior clearly does

not induce enough shrinkage in the large VAR. Note that, unlike the t-prior (of which it is a special

case), Jeffreys’ prior does not have a prior hyperparameter which can be used to provide an increasing

amount of shrinkage as the VAR dimension increases. We have found incorporating such a property into

a hierarchical shrinkage prior is important in obtaining good forecasts. The Lasso forecasts better than

the Jeffreys’ prior, but still forecasts poorly in some cases (e.g. GDP growth forecasts in the n = 100

case). Remember that the Lasso is a special case of the Adaptive Lasso and involves a single global

shrinkage parameter common to all coefficients in each equation. Clearly there are cases where this is

too restrictive and the more flexible Adaptive Lasso is to be preferred.

With regards to VAR dimension, we are finding some evidence of the benefits of working with

larger VARs. For GDP forecasting, there is strong evidence that working with n = 20 leads to better

forecasts than working with n = 10 or an AR(1) model. However, moving to n = 100 leads to a slight
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deterioration in forecast performance relative to n = 20. For unemployment, in some cases we are

finding n = 100 to forecast best and in the remainder models with n = 20 are best. For inflation, with

a single exception, smaller more parsimonious models are chosen. The single exception occurs for h = 1

where log-scores indicate that the 100 dimensional VAR with Adaptive Lasso prior is forecasting best.

For GDP growth and inflation we are finding strong evidence that stochastic volatility is present.

That is, a comparison of models which are identical except that one contains stochastic volatility and

the other does not reveals the former to have a better forecast metric.

Table 5: Forecasting Results for Real GDP
Homoskedastic Heteroskedastic

Forecast Horizon h = 1 h = 4 h = 1 h = 4 h = 1 h = 4 h = 1 h = 4
Model MSFE Log-scores MSFE Log-scores
AR(1) 1.52 1.69 -1.40 -1.43 1.52 1.69 -1.40 -1.43

100 variables model
Normal Independent 1.00** 1.28*** -1.18*** -1.28 0.58*** 0.90*** -2.31 -1.67

Horseshoe 1.08** 1.41*** -1.21*** -1.32 0.72*** 0.93*** -1.01*** -1.17
Lasso 1.59 1.62*** -1.42 -1.43 0.96*** 1.01*** -1.14 -1.24

Adaptive Lasso 1.07** 1.39*** -1.22*** -1.31 0.70*** 1.78 -1.01*** -1.22
t-prior 1.06** 1.46*** -1.21*** -1.33 0.70*** 1.19 -1.01*** -1.24
SSVS 1.00** 1.29*** -1.18*** -1.28 0.57*** 0.92*** -1.54* -1.59

Jeffreys’ 1.43** 1.58*** -1.37*** -1.40 0.83*** 1.00*** -1.09 -1.22
20 variables model

Normal Independent 0.73** 1.35*** -1.02*** -1.25 0.49*** 1.01*** -0.83*** -1.23
Horseshoe 0.71** 1.30*** -1.01*** -1.24 0.50*** 0.94*** -0.83*** -1.19

Lasso 0.74** 1.25*** -1.03*** -1.23 0.52*** 0.93*** -0.85*** -1.18
Adaptive Lasso 0.72** 1.28*** -1.02*** -1.24 0.51*** 0.94*** -0.85*** -1.19

t-prior 0.72** 1.29*** -1.01*** -1.24 0.50 *** 0.93*** -0.84*** -1.20
SSVS 0.72** 1.30*** -1.01*** -1.25 0.49*** 1.06 -0.83*** -1.21

Jeffreys’ 0.72** 1.32*** -1.01*** -1.24 0.49*** 0.96*** -0.83*** -1.20
10 variables model

Normal Independent 1.22** 1.65 -1.28*** -1.38** 0.78*** 1.07*** -1.06 -1.24
Horseshoe 1.20** 1.50* -1.28*** -1.35*** 0.77*** 1.00*** -1.05** -1.24

Lasso 1.21*** 1.42*** -1.28*** -1.34 0.77*** 0.96*** -1.05** -1.22
Adaptive Lasso 1.19** 1.47** -1.27*** -1.35* 0.76*** 1.00*** -1.05** -1.25

t-prior 1.19** 1.48*** -1.27*** -1.34*** 0.77*** 1.01*** -1.05 -1.26
SSVS 1.21** 1.57 -1.28*** -1.37*** 0.77*** 1.04*** -1.06 -1.27

Jeffreys’ 1.19** 1.51* -1.27*** -1.35*** 0.76*** 1.01*** -1.05*** -1.23
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Table 6: Forecasting Results for Unemployment
Homoskedastic Heteroskedastic

Forecast Horizon h = 1 h = 4 h = 1 h = 4 h = 1 h = 4 h = 1 h = 4
Model MSFE Log-scores MSFE Log-scores
AR(1) 1.01 1.73 -1.18 -1.39 1.01 1.73 -1.18 -1.39

100 variables model
Normal Independent 1.08 1.00*** -1.83 -1.41 1.39 1.01* -3.60 -1.33

Horseshoe 1.21 1.02*** -1.75 -1.42 0.78 0.89*** -1.59 -1.77
Lasso 0.89 1.04*** -1.35 -1.46 0.72 0.90*** -1.70 -1.84

Adaptive Lasso 0.89 0.93*** -1.82 -1.69 0.77 1.26 -1.36 -1.63
t-prior 0.88 0.97*** -1.85 -1.65 0.72 0.93*** -1.49 -1.77
SSVS 1.08 1.00*** -1.83 -1.43 1.38 1.06* -3.79 -1.59

Jeffreys’ 1.20 1.29*** -1.52 -1.56 1.29 1.43 -1.46 -1.65
20 variables model

Normal Independent 0.59** 1.52 -0.92** -1.32 0.52** 1.09*** -0.98 -1.49
Horseshoe 0.54** 1.37* -0.88** -1.34 0.45** 1.05** -0.85 -1.58

Lasso 0.52*** 1.11*** -0.86*** -1.32 0.48*** 1.00*** -0.93 -1.73
Adaptive Lasso 0.51** 1.24*** -0.85*** -1.36 0.48*** 1.00** -0.91 -1.60

t-prior 0.51** 1.29** -0.84*** -1.30 0.48** 1.00** -0.92 -1.46
SSVS 0.58** 1.45 -0.91** -1.29 0.50** 1.06** -0.94 -1.45

Jeffreys’ 0.57** 1.51 -0.90*** -1.28 0.48*** 1.08* -0.92 -1.52
10 variables model

Normal Independent 0.82*** 1.36** -1.08 -1.30 0.69*** 1.15*** -1.03 -1.44
Horseshoe 0.74*** 1.16*** -1.03 -1.33 0.65*** 1.06*** -1.04 -1.54

Lasso 0.73*** 1.12*** -1.02 -1.31 0.65*** 1.03*** -1.07 -1.60
Adaptive Lasso 0.74*** 1.18*** -1.03 -1.31 0.65*** 1.07*** -1.04 -1.54

t-prior 0.75*** 1.19*** -1.04 -1.29 0.65*** 1.08*** -1.03 -1.48
SSVS 0.79*** 1.28** -1.06 -1.32 0.67*** 1.12*** -1.03 -1.45

Jeffreys’ 0.74*** 1.15*** -1.03 -1.29 0.66*** 1.08*** -1.07 -1.54
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Table 7: Forecasting Results for PCE Inflation
Homoskedastic Heteroskedastic

Forecast Horizon h = 1 h = 4 h = 1 h = 4 h = 1 h = 4 h = 1 h = 4
Model MSFE Log-scores MSFE Log-scores
AR(1) 2.02 2.01 -1.53 -1.55 2.02 2.01 -1.53 -1.55

100 variables model
Normal Independent 2.09 2.40 -1.56 -1.56 2.67 3.26 -1.73 -1.53

Horseshoe 2.20 3.23 -1.60 -1.66 3.30 2.41 -1.77 -1.52
Lasso 2.11 2.06 -1.56 -1.58 2.44 3.30 -1.64 -1.60

Adaptive Lasso 2.57 3.11 -1.52 -1.68 3.66 4.32 -1.72 -1.74
t-prior 3.74 5.64 -1.75 -1.89 3.14 3.93 -1.67 -1.70
SSVS 2.11 2.41 -1.56 -1.57 2.39 2.92 -1.86 -1.60

Jeffreys’ 6.44 8.95 -2.08 -2.15 10.86 10.97 -2.11 -2.17
20 variables model

Normal Independent 2.58 2.70 -1.70 -1.62 2.60 2.64 -1.57 -1.55
Horseshoe 2.89 2.78 -1.75 -1.64 2.76 2.51 -1.59 -1.55

Lasso 2.66 2.35 -1.69 -1.59 2.63 2.44 -1.55 -1.51
Adaptive Lasso 2.76 2.62 -1.72 -1.62 2.63 2.49 -1.56 -1.55

t-prior 2.83 2.76 -1.73 -1.63 2.61 2.51 -1.55 -1.55
SSVS 2.57 2.67 -1.70 -1.62 2.61 2.61 -1.55 -1.53

Jeffreys’ 2.87 3.06 -1.75 -1.66 2.68 2.55 -1.62 -1.57
10 variables model

Normal Independent 2.16 2.13 -1.58 -1.56 2.41 2.38 -1.44 -1.49
Horseshoe 2.14 2.07 -1.58 -1.57 2.33 2.31 -1.43 -1.49

Lasso 2.09 2.04 -1.54 -1.57 2.18 2.27 -1.41 -1.52
Adaptive Lasso 2.12 2.05 -1.56 -1.56 2.33 2.35 -1.42 -1.51

t-prior 2.12 2.06 -1.57 -1.56 2.33 2.32 -1.43 -1.50
SSVS 2.15 2.11 -1.56 -1.57 2.41 2.37 -1.44 -1.49

Jeffreys’ 2.15 2.08 -1.58 -1.56 2.38 2.38 -1.44 -1.51

6 Conclusions

The computational demands of a Bayesian analysis using large VARs can be very large, or even

prohibitive, when MCMC methods are used. And empirically-interesting versions of large VARs

involving hierarchical shrinkage priors have, in the past, required use of MCMC methods. In response

to this situation, we have developed VB methods for VARs with a range of hierarchical shrinkage priors

with stochastic volatility. In our empirical work, we have established that VB methods work well.

That is, they are computationally efficient and scaleable. Estimation is very quick, even in VARs with

hundreds of variables. Furthermore, they are accurate in the sense that they give very similar results to

MCMC. Finally, our forecasting exercise suggests that hierarchical shrinkage and stochastic volatility,

features that are rarely considered in the existing large VAR literature, are both useful additions to the
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forecaster’s toolbox.
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